Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Acta Physiologica Sinica ; (6): 153-159, 2023.
Article in Chinese | WPRIM | ID: wpr-980992

ABSTRACT

This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.


Subject(s)
Animals , Mice , Chemokines, CXC/pharmacology , Hypoxia , Ligands , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Microglia/metabolism , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/pharmacology , RNA, Messenger/metabolism
2.
Chinese Medical Journal ; (24): 1177-1187, 2023.
Article in English | WPRIM | ID: wpr-980908

ABSTRACT

BACKGROUND@#Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys.@*METHODS@#In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining.@*RESULTS@#15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI.@*CONCLUSION@#Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.


Subject(s)
Humans , Mice , Animals , Transcriptome/genetics , Ligands , Kidney/metabolism , Acute Kidney Injury/metabolism , Ischemia/metabolism , Reperfusion Injury/metabolism , Sequence Analysis, RNA , Adaptor Proteins, Signal Transducing/metabolism , Tumor Suppressor Proteins/metabolism
3.
Journal of Peking University(Health Sciences) ; (6): 339-342, 2023.
Article in Chinese | WPRIM | ID: wpr-986858

ABSTRACT

OBJECTIVE@#To compare the consistency of programmed cell death 1-ligand 1 (PD-L1, clone E1L3N, 22C3, SP263) in different immunohistochemical staining methods.@*METHODS@#The first step was to select the optimal process: The PD-L1(clone E1L3N) antibody recommended process, self-built process ①, self-built process ② and self-built process ③ were used to perform immunohistochemical staining in 5 cases of tonsil tissue. The quality of all slides was scored by expert pathologists (0-6 points). The process with the highest score was selected. The second step was to compare the consistency between the optimal procedure and the two standard procedures. Thirty-two cases of lung non-small cell carcinoma diagnosed by pathology in Peking University First Hospital in the past two years were randomly selected. The 32 cases were stained in parallel with the SP263 and 22C3 standard procedures, and all stained slides were scored by specialized pathologists for tumor proportion score (TPS). The scoring results were grouped according to < 1%, ≥1% to < 10%, ≥10% to < 50%, and ≥50%. The consistency of PD-L1 detection antibody clone E1L3N and 22C3, E1L3N and SP263 staining results was analyzed.@*RESULTS@#Tonsil stained slides scores (0-6 points) were as follows: The recommended protocol was 5, 5, 5, 5 and 5. The self-built process ① was 5, 6, 6, 5 and 6. The self-built process ② was 4, 4, 4, 4 and 4.The self-built process ③ was 3, 3, 3, 3 and 3. The self-built process ① was the best with the highest score. The TPSs of 32 non small cell lung carcinoma (NSCLC) cases were as follows: Of self-built process ①, 6 cases were lower than 1%, 5 cases were from 1% to 10%, 10 cases were from 10% to 50%, and 11 cases were higher than 50%; of 22C3 standard procedure, 5 cases were lower than 1%, 3 cases were from 1% to 10%, 13 cases were from 10% to 50%, 11 cases were higher than 50%; of SP263 standard procedure, 7 cases were lower than 1%, 4 cases were from 1% to 10%, 11 cases were from 10% to 50%, 10 cases were higher than 50%. The results of the consistency test were as follows: The κ value for self-built process ① and 22C3 standard procedure was 0.736 (P < 0.001), the agreement was good; the κ value for self-built process ① and SP263 standard procedure was 0.914 (P < 0.001), the agreement was very good.@*CONCLUSION@#The immunostaining using PD-L1(E1L3N) with validated self-built staining protocol ① by Ventana Benchmark GX platform can obtain high quality of slides, and the TPSs based on these slides are in good agreement with 22C3 and SP263 standard procedures.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms/pathology , Immunohistochemistry , B7-H1 Antigen/metabolism , Ligands , Antibodies , Staining and Labeling , Apoptosis
4.
Chinese Journal of Contemporary Pediatrics ; (12): 166-171, 2023.
Article in Chinese | WPRIM | ID: wpr-971055

ABSTRACT

OBJECTIVES@#To study the expression levels of CD4+NKG2D+ T cells and NKG2D soluble ligands, the soluble MHC class I chain-related molecules A and B (sMICA/sMICB) in the active stage and stable stage of juvenile idiopathic arthritis (JIA) and their role in the disease activity of JIA.@*METHODS@#Nineteen children with systemic JIA and 20 children with articular JIA who were diagnosed in Children's Hospital of Chongqing Medical University from November 2019 to December 2021 were enrolled in this prospective study. Six healthy children were enrolled as the control group. After peripheral blood samples were collected, ELISA was used to measure the levels of sMICA and sMICB, and flow cytometry was used to measure the percentage of CD4+NKG2D+ T cells. Systemic Juvenile Arthritis Disease Activity Score-27 (sJADAS-27)/Juvenile Arthritis Disease Activity Score-27 (JADAS-27) was used to evaluate the disease activity in children with JIA. The Pearson correlation analysis and the receiver operating characteristic (ROC) curve were used to assess the role of CD4+NKG2D+ T cells, sMICA and sMICB in the disease activity of JIA.@*RESULTS@#The active systemic JIA and active articular JIA groups had a significant increase in the percentage of CD4+NKG2D+ T cells compared with the control group and their corresponding inactive JIA group (P<0.05). The JIA groups had significantly higher levels of sMICA and sMICB than the control group (P<0.05), and the active articular JIA group had a significantly higher level of sMICB than the stable articular JIA group (P<0.05). In the children with JIA, the percentage of CD4+NKG2D+ T cells and the levels of sMICA and sMICB were positively correlated with sJADAS-27/JADAS-27 disease activity scores (P<0.05). The ROC curve analysis showed that sMICB had an area under the curve of 0.755 in evaluating the disease activity of JIA, with a specificity of 0.90 and a sensitivity of 0.64.@*CONCLUSIONS@#The percentage of CD4+NKG2D+ T cells and the levels of sMICA and sMICB increase in children with JIA compared with healthy children and are positively correlated with the disease activity of JIA, suggesting that CD4+NKG2D+ T cells and NKG2D ligands can be used as potential biomarkers for evaluating the disease activity of JIA.


Subject(s)
Child , Humans , Arthritis, Juvenile/pathology , Ligands , NK Cell Lectin-Like Receptor Subfamily K , Prospective Studies , T-Lymphocytes/pathology
5.
Asian Journal of Andrology ; (6): 223-229, 2023.
Article in English | WPRIM | ID: wpr-971017

ABSTRACT

We identified distinct senescence-related molecular subtypes and critical genes among prostate cancer (PCa) patients undergoing radical prostatectomy (RP) or radical radiotherapy (RT). We conducted all analyses using R software and its suitable packages. Twelve genes, namely, secreted frizzled-related protein 4 (SFRP4), DNA topoisomerase II alpha (TOP2A), pleiotrophin (PTN), family with sequence similarity 107 member A (FAM107A), C-X-C motif chemokine ligand 14 (CXCL14), prostate androgen-regulated mucin-like protein 1 (PARM1), leucine zipper protein 2 (LUZP2), cluster of differentiation 38 (CD38), cartilage oligomeric matrix protein (COMP), vestigial-like family member 3 (VGLL3), apolipoprotein E (APOE), and aldehyde dehydrogenase 2 family member (ALDH2), were eventually used to subtype PCa patients from The Cancer Genome Atlas (TCGA) database and GSE116918, and the molecular subtypes showed good correlations with clinical features. In terms of the tumor immune environment (TME) analysis, compared with cluster 1, cancer-associated fibroblasts (CAFs) scored significantly higher, while endothelial cells scored lower in cluster 2 in TCGA database. There was a statistically significant correlation between both CAFs and endothelial cells with biochemical recurrence (BCR)-free survival for PCa patients undergoing RP. For the GSE116918 database, cluster 2 had significantly lower levels of CAFs and tumor purity and higher levels of stromal, immune, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) scores than cluster 1; in addition, patients with high levels of CAFs, stromal scores, immune scores, and ESTIMATE scores and low levels of tumor purity tended to suffer from BCR. Based on the median of differentially expressed checkpoints, high expression of CD96, hepatitis A virus cellular receptor 2 (HAVCR2), and neuropilin 1 (NRP1) in GSE116918 and high expression of CD160 and tumor necrosis factor (ligand) superfamily member 18 (TNFSF18) in TCGA database were associated with a significantly higher risk of BCR than their counterparts. In conclusion, we first constructed distinct molecular subtypes and critical genes for PCa patients undergoing RP or RT from the fresh perspective of senescence.


Subject(s)
Male , Humans , Endothelial Cells , Ligands , Prostatic Neoplasms/pathology , Prostate/pathology , Prostatectomy , Aldehyde Dehydrogenase, Mitochondrial , DNA-Binding Proteins , Transcription Factors
6.
Chinese Journal of Oncology ; (12): 117-128, 2023.
Article in Chinese | WPRIM | ID: wpr-969814

ABSTRACT

Objective: To investigate the expression of programmed death protein-ligand 1 (PD-L1) in liver cancer stem-like cells (LCSLC) and its effect on the characteristics of tumor stem cells and tumor biological function, to explore the upstream signaling pathway regulating PD-L1 expression in LCSLC and the downstream molecular mechanism of PD-L1 regulating stem cell characteristics, also tumor biological functions. Methods: HepG2 was cultured by sphere-formating method to obtain LCSLC. The expressions of CD133 and other stemness markers were detected by flow cytometry, western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expressions of stemness markers and PD-L1. The biological functions of the LCSLC were tested by cell function assays, to confirm that the LCSLC has the characteristics of tumor stem cells. LCSLC was treated with cell signaling pathway inhibitors to identify relevant upstream signaling pathways mediating PD-L1 expression changes. The expression of PD-L1 in LCSLC was down regulated by small interfering RNA (siRNA), the expression of stem cell markers, tumor biological functions of LCSLC, and the changes of cell signaling pathways were detected. Results: Compared with HepG2 cells, the expression rate of CD133 in LCSLC was upregulated [(92.78±6.91)% and (1.40±1.77)%, P<0.001], the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were also higher than those in HepG2 cells (P<0.05), the number of sphere-formating cells increased on day 7 [(395.30±54.05) and (124.70±19.30), P=0.001], cell migration rate increased [(35.41±6.78)% and (10.89±4.34)%, P=0.006], the number of transmembrane cells increased [(75.77±10.85) and (20.00±7.94), P=0.002], the number of cloned cells increased [(120.00±29.51) and (62.67±16.77), P=0.043]. Cell cycle experiments showed that LCSLC had significantly more cells in the G(0)/G(1) phase than those in HepG2 [(54.89±3.27) and (32.36±1.50), P<0.001]. The tumor formation experiment of mice showed that the weight of transplanted tumor in LCSLC group was (1.32±0.17)g, the volume is (1 779.0±200.2) mm(3), were higher than those of HepG2 cell [(0.31±0.06)g and (645.6±154.9)mm(3), P<0.001]. The expression level of PD-L1 protein in LCSLC was 1.88±0.52 and mRNA expression level was 2.53±0.62, both of which were higher than those of HepG2 cells (P<0.05). The expression levels of phosphorylation signal transduction and transcription activation factor 3 (p-STAT3) and p-Akt in LCSLC were higher than those in HepG2 cells (P<0.05). After the expression of p-STAT3 and p-Akt was down-regulated by inhibitor treatment, the expression of PD-L1 was also down-regulated (P<0.05). In contrast, the expression level of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) in LCSLC was lower than that in HepG2 cells (P<0.01), there was no significant change in PD-L1 expression after down-regulated by inhibitor treatment (P>0.05). After the expression of PD-L1 was knockdown by siRNA, the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were decreased compared with those of siRNA-negative control (NC) group (P<0.05). The number of sphere-formating cells decreased [(45.33±12.01) and (282.00±29.21), P<0.001], the cell migration rate was lower than that in siRNA-NC group [(20.86±2.74)% and (46.73±15.43)%, P=0.046], the number of transmembrane cells decreased [(39.67±1.53) and (102.70±11.59), P=0.001], the number of cloned cells decreased [(57.67±14.57) and (120.70±15.04), P=0.007], the number of cells in G(0)/G(1) phase decreased [(37.68±2.51) and (57.27±0.92), P<0.001], the number of cells in S phase was more than that in siRNA-NC group [(30.78±0.52) and (15.52±0.83), P<0.001]. Tumor formation in mice showed that the tumor weight of shRNA-PD-L1 group was (0.47±0.12)g, the volume is (761.3±221.4)mm(3), were lower than those of shRNA-NC group [(1.57±0.45)g and (1 829.0±218.3)mm(3), P<0.001]. Meanwhile, the expression levels of p-STAT3 and p-Akt in siRNA-PD-L1 group were decreased (P<0.05), while the expression levels of p-ERK1/2 and β-catenin did not change significantly (P>0.05). Conclusion: Elevated PD-L1 expression in CD133(+) LCSLC is crucial to maintain stemness and promotes the tumor biological function of LCSLC.


Subject(s)
Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , B7-H1 Antigen/metabolism , Ligands , Liver Neoplasms/pathology , RNA, Small Interfering/metabolism , Neoplastic Stem Cells/physiology , Cell Line, Tumor , Cell Proliferation
7.
Journal of Central South University(Medical Sciences) ; (12): 829-836, 2023.
Article in English | WPRIM | ID: wpr-982353

ABSTRACT

OBJECTIVES@#This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/β-catenin and chemokine signaling pathways.@*METHODS@#PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/β-catenin and chemokine signal pathways was investigated.@*RESULTS@#Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/β-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while β-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05).@*CONCLUSIONS@#There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/β- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.


Subject(s)
Humans , DNA Methylation , Transcriptome , beta Catenin , Leukocytes, Mononuclear , Ligands , DNA , RNA, Messenger/genetics
8.
China Journal of Chinese Materia Medica ; (24): 3774-3785, 2023.
Article in Chinese | WPRIM | ID: wpr-981510

ABSTRACT

In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl β-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.


Subject(s)
Ligands , Glycosyltransferases/genetics , Sterols , Phylogeny , Ascomycota , Liliaceae/chemistry , Melanthiaceae , Diosgenin , Sugars , Glucose , Uridine Diphosphate
9.
Braz. j. biol ; 82: e232525, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1249239

ABSTRACT

The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptorligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.


A ligação de um ligante com um receptor molecular induz um sinal que viaja através do receptor, chegando ao domínio interno e disparando uma cascata de resposta. Em trabalhos anteriores em receptores de células T e sua ligação com antígenos estranhos, observamos a presença de padrões moleculares planares capazes de gerar campos eletromagnéticos dentro das proteínas. Esses planos mostraram um comportamento coerente (sincronizado), replicando, instantaneamente, no domínio intracelular o que ocorreu no domínio extracelular, enquanto o ligante era acoplado. No presente estudo, examinamos essa transdução ­ a capacidade de um sinal de acoplamento de penetrar profundamente a molécula receptora e induzir uma resposta. Verificamos a presença de um comportamento coerente em sistemas diversos de receptor-ligante. Para apreciar essa diversidade, apresentamos quatro sistemas bioquímicos diferentes: TCR-peptídeo, ADP-bomba de cálcio, hemoglobina-oxigênio e gp120-CD4 acoplamento viral. A confirmação de transdução molecular sincronizada em cada um desses sistemas sugere que o mecanismo proposto ocorreria em todos os sistemas bioquímicos receptor-ligante.


Subject(s)
Signal Transduction , Electromagnetic Fields , Receptors, Antigen, T-Cell/genetics , Ligands
10.
Journal of Experimental Hematology ; (6): 400-406, 2022.
Article in Chinese | WPRIM | ID: wpr-928727

ABSTRACT

OBJECTIVE@#To detect the expression level of suppressors of cytokine signaling 3 (SOCS3) in acute lymphoblastic leukemia (ALL), and to observe the effect of over-expresson of SOCS3 in Jurkat cells on the cytotoxicity of NK cells.@*METHODS@#The expression levels of SOCS3 mRNA in peripheral blood mononuclear cells of 20 children with ALL and 20 healthy children (normal control group) were detected by RT-PCR. The peripheral blood NK cells from healthy subjects were selected by immunomagnetic technique, and the purity was detected by flow cytometry. SOCS3 was overexpressed in Jurkat cells infected with lentivirus vector, and SOCS3 mRNA expression was detected by RT-PCR after lentivirus infection. The NK cells were co-cultured with the infected Jurkat, and LDH release method was used to detect the cytotoxicity of NK cells on the infected Jurkat cells. The concentrations of TNF-α and IFN-γ were determined by ELISA. The expression of NKG2D ligands MICA and MICB on the surface of Jurkat cells were detected by flow cytometry. Western blot was used to detect the effect of SOCS3 overexpression on STAT3 phosphorylation in Jurkat cells.@*RESULTS@#Compared with the control group, the mRNA expression of SOCS3 in the peripheral blood mononucleated cells of ALL children was significantly decreased. The purity of NK cells isolated by flow cytometry could reach more than 70%. The expression of SOCS3 mRNA in Jurkat cells increased significantly after lentivirus infection. Overexpression of SOCS3 in Jurkat cells significantly promoted the killing ability of NK cells and up-regulated the secretion of TNF-α and IFN-γ from NK cells. The results of flow cytometry showed that the expression of NKG2D ligands MICA and MICB on Jurkat cells increased significantly after SOCS3 overexpression. Western blot results showed that overexpression of SOCS3 significantly reduced the phosphorylation level of STAT3 protein in Jurkat cells.@*CONCLUSION@#SOCS3 mRNA expression was significantly decreased in ALL patients, and overexpression of SOCS3 may up-regulate the expression of MICA and MICB of NKG2D ligands on Jurkat cell surface through negative regulation of JAK/STAT signaling pathway, thereby promoting the cytotoxic function of NK cells.


Subject(s)
Child , Humans , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/cytology , Leukocytes, Mononuclear/cytology , Ligands , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Messenger/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Asian Journal of Andrology ; (6): 97-101, 2022.
Article in English | WPRIM | ID: wpr-928516

ABSTRACT

To efficiently remove all recurrent lymph nodes (rLNs) and minimize complications, we developed a combination approach that consisted of 68Gallium prostate-specific membrane antigen (PSMA) ligand positron emission tomography (PET)/computed tomography (CT) and integrated indocyanine green (ICG)-guided salvage lymph node dissection (sLND) for rLNs after radical prostatectomy (RP). Nineteen patients were enrolled to receive such treatment. 68Ga-PSMA ligand PET/CT was used to identify rLNs, and 5 mg of ICG was injected into the space between the rectum and bladder before surgery. Fluorescent laparoscopy was used to perform sLND. While extensive LN dissection was performed at level I, another 5 mg of ICG was injected via the intravenous route to intensify the fluorescent signal, and laparoscopy was introduced to intensively target stained LNs along levels I and II, specifically around suspicious LNs, with 68Ga-PSMA ligand PET/CT. Next, both lateral peritonea were exposed longitudinally to facilitate the removal of fluorescently stained LNs at levels III and IV. In total, pathological analysis confirmed that 42 nodes were rLNs. Among 145 positive LNs stained with ICG, 24 suspicious LNs identified with 68Ga-PSMA ligand PET/CT were included. The sensitivity and specificity of 68Ga-PSMA ligand PET/CT for detecting rLNs were 42.9% and 96.6%, respectively. For ICG, the sensitivity was 92.8% and the specificity was 39.1%. At a median follow-up of 15 (interquartile range [IQR]: 6-31) months, 15 patients experienced complete biochemical remission (BR, prostate-specific antigen [PSA] <0.2 ng ml-1), and 4 patients had a decline in the PSA level, but it remained >0.2 ng ml-1. Therefore, 68Ga-PSMA ligand PET/CT integrating ICG-guided sLND provides efficient sLND with few complications for patients with rLNs after RP.


Subject(s)
Humans , Male , Gallium Isotopes , Gallium Radioisotopes , Indocyanine Green , Ligands , Lymph Node Excision , Lymphatic Metastasis/diagnostic imaging , Neoplasm Recurrence, Local/surgery , Positron Emission Tomography Computed Tomography , Prostate , Prostatectomy , Prostatic Neoplasms/surgery , Salvage Therapy
12.
Chinese Journal of Medical Genetics ; (6): 499-504, 2022.
Article in Chinese | WPRIM | ID: wpr-928445

ABSTRACT

OBJECTIVE@#To investigate the association of molecular genetic polymorphism of KIR-HLA systems with acute lymphoblastic leukemia (ALL) and acute myelocytic leukemia (AML) in southern Chinese Han.@*METHODS@#A total number of 323 cases of adult ALL patients, 350 adult AML, and 745 random healthy controls were tested by KIR PCR-SSP and HLA-A, -B, -C sequence-based typing (PCR-SBT) methods. The molecular genetic polymorphisms of KIR genes and KIR gene profiles, classⅠ HLA ligands, and KIR receptor +HLA ligand combinations were compared between patient and healthy control groups.@*RESULTS@#A total number of 32 and 33 different kinds of KIR profiles were identified in the ALL and AML patient groups. Compared with the observed frequencies of KIR profiles in healthy controls, the observed frequencies of KIR profile AA1 were significantly lower in both the ALL and AML groups (ALL group: 45.79% vs. 55.30%, Pc=0.004; AML group: 48.27% vs. 55.30%, Pc=0.030). In the ALL group, the observed frequencies of 2DL2 gene and 2DL2+HLA-C1 combination, 2DS2 gene and 2DS2+HLA-C1 combination were significantly higher than those in healthy controls (P<0.05), whereas the frequencies of 2DL3 gene, HLA-A3/A11 ligand and 3DL2+HLA-A3/A11 combination were significantly lower than those in healthy controls. However, no significant differences remained after Bonferroni correction (Pc>0.05). In AML group, the observed frequencies of both 2DS1 and 2DL5 genes were significantly higher than that in healthy controls, whereas the frequencies of HLA-C2 ligand and 2DL1+HLA-C2 combination were significantly lower than that in healthy controls(P<0.05). However, no significant difference existed after Bonferroni correction (Pc>0.05).@*CONCLUSION@#This study revealed some potential susceptibility or protective factors related to acute leukemia in southern Chinese Han, especially the protective factor KIR profile AA1, which might provide new clues and theoretical basis for the pathogenesis of acute leukemia and individualized immunotherapy.


Subject(s)
Adult , Humans , China , Gene Frequency , Genotype , HLA-A3 Antigen/genetics , Leukemia, Myeloid, Acute/genetics , Ligands , Polymorphism, Genetic , Receptors, KIR/genetics
13.
China Journal of Orthopaedics and Traumatology ; (12): 464-469, 2022.
Article in Chinese | WPRIM | ID: wpr-928342

ABSTRACT

OBJECTIVE@#To investigate the effect of intra-articular berberine injection on the structural remodeling of subchondral bone plate and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand(OPG/RANKL) system expression in rabbits with osteoarthritis(OA).@*METHODS@#Forty 12-month-old male rabbits with an average of(2.73±0.18) kg of body weight, underwent left anterior cruciate ligament transection(ACLT), and were divided into berberine group and placebo groups after operation, 20 rabbits in each group. The berberine group received intra-articular injection of 100 μmol/L berberine 0.3 ml every week for 6 weeks. In placebo group, the same dose of 0.9% sodium chloride injection was injected into the left knee joint cavity every week for 6 weeks. Another 20 12-month-old male rabbits, weighing (2.68±0.18) kg, underwent sham operation on the left knee joint without intra-articular injection intervention (sham operation group). On the last day of the sixth week after operation, three groups of animals were sacrificed to obtain knee joint specimens. The femoral medial condyle samples were obtained for histological evaluation of cartilage and subchondral bone, Mankin scoring system was used to evaluate articular cartilage structure. Image-Pro Plus(IPP) software was used to evaluate subchondral bone plate bone volume(BV), bone volume/total volume(BV/TV), trabecular circumference(TC), mean trabecular thickness (Tb.Th). Real-time quantitative reverse transcription polymerization Enzyme chain reaction(reverse transcription-polymerase chain reaction, RT-PCR) was used to detect the mRNA expression levels of OPG and RANKL in subchondral bone tissue at 6 weeks after operation.@*RESULTS@#The cartilage structure evaluation showed that the surface of cartilage tissue in the sham operation group was smooth and flat, and the safranin coloration was full in the full thickness of the cartilage;the cartilage tissue in the berberine group showed uneven surface layer, and the staining of safranin O was mildly decreased;the surface layer fibrosis was seen in placebo group, Safranin O faded significantly. The Mankin score in the berberine group was lower than that in placebo group(P<0.01), but higher than that in sham operation group(P<0.01). The structural evaluation of subchondral bone plate showed that the trabecular bone in sham-operated group was densely arranged;after berberine intervention, the trabeculae were closely arranged;the subchondral bone trabeculae in placebo group were relatively sparse, and the distance between trabeculae was wider. Subchondral bone plate IPP software evaluation showed that BV, BV/TV, TC, Tb.Th in berberine group were higher than those in placebo group(P<0.01), BV, BV/TV, TC, Tb.Th in berberine group were higher than those in placebo group(P<0.01), while lower than the sham operation group (P<0.01). PCR test results showed that the expression of OPG mRNA in the berberine group was significantly higher than that in placebo group(P<0.01), and OPG mRNA in the berberine group was lower than that in sham operation group (P<0.01). There was no significant difference in mRNA expression of RANKL among three groups(P>0.05);the ratio of OPG/RANKL in berberine group was higher than that in placebo group(P<0.01), but lower than that in sham operation group(P<0.01).@*CONCLUSION@#Intra-articular injection of berberine can effectively inhibit the resorption of subchondral bone in the early stage of OA and delay the development of the disease. The specific mechanism may be that berberine maintains the balance of OPG/RANKL system by up-regulating the expression of OPG gene in subchondral bone.


Subject(s)
Animals , Humans , Male , Rabbits , Berberine/therapeutic use , Bone Density Conservation Agents/therapeutic use , Bone Plates , Cartilage, Articular , Ligands , NF-kappa B/metabolism , Osteoarthritis/metabolism , Osteoprotegerin/metabolism , RNA, Messenger/therapeutic use
14.
China Journal of Chinese Materia Medica ; (24): 1595-1602, 2022.
Article in Chinese | WPRIM | ID: wpr-928089

ABSTRACT

Bombesin receptor subtype-3(BRS-3) is an orphan receptor in the bombesin receptor family. Its signal transduction mechanism and biological function have attracted much attention. Seeking the ligand for BRS-3 is of great significance for exploring its function. Considering the fact that the activation of BRS-3 receptor can induce the change in intracellular Ca~(2+) concentration, the fluo-rometric imaging plate reader(FLIPR) was utilized for ligand screening at the cellular level. Among more than 400 monomeric compounds isolated from Chinese herbs, yuanhunine from Corydalis Rhizoma and sophoraisoflavanone A and licoriphenone from Glycyrrhizae Radix et Rhizoma antagonized BRS-3 to varying degrees. It was confirmed in HEK293 cells expressing BRS-3 that yuanhunine, sophoraisoflavanone A, and licoriphenone inhibited the calcium current response after the activation of BRS-3 by [D-Phe~6,β-Ala~(11),Phe~(13),Nle~(14)]bombesin-(6-14) in a dose-dependent manner with the IC_(50) values being 8.58, 4.10, and 2.04 μmol·L~(-1), respectively. Further study indicated that yuanhunine and sophoraisoflavanone A exhibited good selectivity for BRS-3. In this study, it was found for the first time that monomers derived from Chinese herbs had antagonistic activity against orphan receptor BRS-3, which has provided a tool for further study of BRS-3 and also the potential lead compounds for new drug discovery. At the same time, it provides reference for the research and development of innovative drugs based on the active ingredients of Chinese herbs.


Subject(s)
Humans , Drugs, Chinese Herbal/chemistry , HEK293 Cells , Ligands , Receptors, Bombesin
15.
Chinese Journal of Biotechnology ; (12): 1518-1526, 2022.
Article in Chinese | WPRIM | ID: wpr-927797

ABSTRACT

Covalently anchoring of a ligand/metal via polar amino acid side chain(s) is often observed in metalloenzyme, while the substitutability of metal-binding sites remains elusive. In this study, we utilized a zinc-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbSADH) as a model enzyme, analyzed the sequence conservation of the three residues Cys37, His59, and Asp150 that bind the zinc ion, and constructed the mutant library. After experimental validation, three out of 224 clones, which showed comparative conversion and ee values as the wild-type enzyme in the asymmetric reduction of the model substrate tetrahydrofuran-3-one, were screened out. The results reveal that the metal-binding sites in TbSADH are substitutable without tradeoff in activity and stereoselectivity, which lay a foundation for designing ADH-catalyzed new reactions via metal ion replacement.


Subject(s)
Alcohol Dehydrogenase/metabolism , Catalytic Domain , Ligands , Protein Domains , Zinc/metabolism
16.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 235-240, 2022.
Article in Chinese | WPRIM | ID: wpr-935784

ABSTRACT

Pulmonary fibrosis is an irreversible interstitial lung disease characterized by lung parenchyma remodeling and collagen deposition. In recent years, the incidence and mortality of pulmonary fibrosis caused by unknown causes have risen. However, its pathogenesis is still unclear. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor 4 (CXCR4)/CXCR7 signal axis plays a critical regulatory role in pulmonary fibrosis disease. In addition, the signal axis has been shown to regulate recruitment and migration of circulating fibrocytes, mesenchymal stem cells to the damage lung tissue, the migration of endothelial cells, the proliferation and differentiation of fibroblasts and endothelial cells, which further affects the occurrence and progression of pulmonary fibrosis. In this review, we summarized the pathogenesis and treatment research progress of CXCL12 and its receptor CXCR4/CXCR7 in the occurrence and progression of pulmonary fibrosis.


Subject(s)
Humans , Chemokine CXCL12 , Endothelial Cells/pathology , Ligands , Lung/pathology , Pulmonary Fibrosis/pathology , Receptors, CXCR4
17.
Chinese Journal of Burns ; (6): 629-639, 2022.
Article in Chinese | WPRIM | ID: wpr-940969

ABSTRACT

Objective: To explore the heterogeneity and growth factor regulatory network of dermal fibroblasts (dFbs) in mouse full-thickness skin defect wounds based on single-cell RNA sequencing. Methods: The experimental research methods were adopted. The normal skin tissue from 5 healthy 8-week-old male C57BL/6 mice (the same mouse age, sex, and strain below) was harvested, and the wound tissue of another 5 mice with full-thickness skin defect on the back was harvested on post injury day (PID) 7. The cell suspension was obtained by digesting the tissue with collagenase D and DNase Ⅰ, sequencing library was constructed using 10x Genomics platform, and single-cell RNA sequencing was performed by Illumina Novaseq6000 sequencer. The gene expression matrices of cells in the two kinds of tissue were obtained by analysis of Seurat 3.0 program of software R4.1.1, and two-dimensional tSNE plots classified by cell group, cell source, and gene labeling of major cells in skin were used for visual display. According to the existing literature and the CellMarker database searching, the expression of marker genes in the gene expression matrices of cells in the two kinds of tissue was analyzed, and each cell group was numbered and defined. The gene expression matrices and cell clustering information were introduced into CellChat 1.1.3 program of software R4.1.1 to analyze the intercellular communication in the two kinds of tissue and the intercellular communication involving vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF) signal pathways in the wound tissue, the relative contribution of each pair of FGF subtypes and FGF receptor (FGFR) subtypes (hereinafter referred to as FGF ligand receptor pairs) to FGF signal network in the two kinds of tissue, and the intercellular communication in the signal pathway of FGF ligand receptor pairs with the top 2 relative contributions in the two kinds of tissue. The normal skin tissue from one healthy mouse was harvested, and the wound tissue of one mouse with full-thickness skin defect on the back was harvested on PID 7. The multiple immunofluorescence staining was performed to detect the expression and distribution of FGF7 protein and its co-localized expression with dipeptidyl peptidase 4 (DPP4), stem cell antigen 1 (SCA1), smooth muscle actin (SMA), and PDGF receptor α (PDGFRα) protein. Results: Both the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7 contained 25 cell groups, but the numbers of cells in each cell group between the two kinds of tissue were different. Genes PDGFRα, platelet endothelial cell adhesion molecule 1, lymphatic endothelial hyaluronic acid receptor 1, receptor protein tyrosine phosphatase C, keratin 10, and keratin 79 all had distinct distributions on two-dimensional tSNE plots, indicating specific cell groups respectively. The 25 cell groups were numbered by C0-C24 and divided into 9 dFb subgroups and 16 non-dFb groups. dFb subgroups included C0 as interstitial progenitor cells, C5 as adipose precursor cells, and C13 as contractile muscle cells related fibroblasts, etc. Non-dFb group included C3 as neutrophils, C8 as T cells, and C18 as erythrocytes, etc. Compared with that of the normal skin tissue of healthy mice, the intercellular communication in the wound tissue of full-thickness skin defected mice on PID 7 was more and denser, and the top 3 cell groups in intercellular communication intensity were dFb subgroups C0, C1, and C2, of which all communicated with other cell groups in the wound tissue. In the wound tissue of full-thickness skin defected mice on PID 7, VEGF signals were mainly sent by the dFb subgroup C0 and received by vascular related cell groups C19 and C21, PDGF signals were mainly sent by peripheral cells C14 and received by multiple dFb subgroups, EGF signals were mainly sent by keratinocyte subgroups C9 and C11 and received by the dFb subgroup C0, and the main sender and receiver of FGF signals were the dFb subgroup C6. In the relative contribution rank of FGF ligand receptor pairs to FGF signal network in the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7, FGF7-FGFR1 was the top 1, and FGF7-FGFR2 or FGF10-FGFR1 was in the second place, respectively; compared with those in the normal skin tissue, there was more intercellular communication in FGF7-FGFR1 signal pathway, while the intercellular communication in FGF7-FGFR2 and FGF10-FGFR1 signal pathways decreased slightly or did not change significantly in the wound tissue; the intercellular communication in FGF7-FGFR1 signal pathway in the wound tissue was stronger than that in FGF7-FGFR2 or FGF10-FGFR1 signal pathway; in the two kinds of tissue, FGF7 signal was mainly sent by dFb subgroups C0, C1, and C2, and received by dFb subgroups C6 and C7. Compared with that in the normal skin tissue of healthy mouse, the expression of FGF7 protein was higher in the wound tissue of full-thickness skin defected mouse on PID 7; in the normal skin tissue, FGF7 protein was mainly expressed in the skin interstitium and also expressed in the white adipose tissue near the dermis layer; in the two kinds of tissue, FGF7 protein was co-localized with DPP4 and SCA1 proteins and expressed in the skin interstitium, co-localized with PDGFRα protein and expressed in dFbs, but was not co-localized with SMA protein, with more co-localized expression of FGF7 in the wound tissue than that in the normal skin tissue. Conclusions: In the process of wound healing of mouse full-thickness skin defect wound, dFbs are highly heterogeneous, act as potential major secretory or receiving cell populations of a variety of growth factors, and have a close and complex relationship with the growth factor signal pathways. FGF7-FGFR1 signal pathway is the main FGF signal pathway in the process of wound healing, which targets and regulates multiple dFb subgroups.


Subject(s)
Animals , Male , Mice , Dipeptidyl Peptidase 4 , Epidermal Growth Factor , Fibroblasts , Imidazoles , Ligands , Mice, Inbred C57BL , Receptor, Platelet-Derived Growth Factor alpha , Sequence Analysis, RNA , Skin Abnormalities , Soft Tissue Injuries , Spinocerebellar Ataxias , Sulfonamides , Thiophenes , Vascular Endothelial Growth Factor A
18.
Journal of Biomedical Engineering ; (6): 1263-1268, 2022.
Article in Chinese | WPRIM | ID: wpr-970666

ABSTRACT

Prostate cancer is the most common malignant tumor in male urinary system, and the morbidity and mortality rate are increasing year by year. Traditional imaging examinations have some limitations in the diagnosis of prostate cancer, and the advent of molecular imaging probes and imaging technology have provided new ideas for the integration of diagnosis and treatment of prostate cancer. In recent years, prostate-specific membrane antigen (PSMA) has attracted much attention as a target for imaging and treatment of prostate cancer. PSMA ligand positron emission tomography (PET) has important reference value in the diagnosis, initial staging, detection of biochemical recurrence and metastasis, clinical decision-making guidance and efficacy evaluation of prostate cancer. This article briefly reviews the clinical research and application progress on PSMA ligand PET imaging in prostate cancer in recent years, so as to raise the efficiency of clinical applications.


Subject(s)
Male , Humans , Prostate/pathology , Ligands , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Positron-Emission Tomography
19.
São Paulo; s.n; s.n; 2022. 191 p. tab, graf.
Thesis in English | LILACS | ID: biblio-1378632

ABSTRACT

The interaction of the organic ligands with metal nanoparticle has a very important role for applications in catalysis, as well as other processes involving ligands that can activate or poison the surface of metal nanoparticles. Very little has been studied so far on the role of organic ligands used either in the preparation of nanoparticles for applications in catalysis or addition in the reaction to activate the catalyst. In this thesis, we have studied strategies for the synthesis of metal nanoparticles, their use as components for the preparation of supported catalysts and activation and deactivation processes involving the ligands used as stabilizers or purposely added to the reaction medium or support for stimulate new reactivity and selectivity in reactions of industrial interest, such as hydrogenation. Here, the concept of frustrated Lewis pairs (FLPs) has been expanded to surface-FLP analogous formed by combining gold nanoparticles (NPs) and Lewis bases, such as amines or phosphines, creating a new channel for the heterolytic cleavage of H2, and thereby performing selective hydrogenation reactions with gold. A first approach to improve the catalytic activity of gold nanoparticles was to analyze the effect of nitrogen-containing bases. The starting inactive gold nanoparticles became highly active for the selective hydrogenation of alkyne into cis-alkenes. The hydrogenation proceeded smoothly and fully selective using H2 as the hydrogen source and under relatively mild conditions (80 °C, 6 bar H2). Our studies also have revealed that the presence of capping ligands blocks the adsorption of the amine to the gold surface, avoiding the FLPs interface and thereby leading to low catalytic activity. When the capping ligands were removed from the catalyst surface and an amine ligand was added, the FLPs interface is recovered and an enhanced catalytic activity was observed. Furthermore, we have demonstrated the successful use of simple organophosphorus ligands to boost the catalytic activity of Au NPs for a range of important reduction reactions, namely, epoxides, N-oxides, sulfoxides, and alkynes. Furthermore, the choice of phosphorus-containing ligands resulted in a decrease in the amount necessary to reach high conversion and selectivity in comparison with our previous study with N-containing ligands. The ligand-to-metal ratio decreased from 100 (amine/Au) to 1 (phosphite/Au). The synthesis of gold nanoparticles supported on N-doped carbon supports was used as an alternative method for the synthesis of a heterogeneous active gold catalyst for selective hydrogenations. The main advantage with respect to previous studies was to avoid the addition of external ligands, in large excess, for the activation of gold surfaces via FLP, making the whole process environmentally and economically attractive


A interação dos ligantes orgânicos com nanopartículas de metal certamente tem um papel muito importante para aplicações em catálise, bem como outros processos envolvendo ligantes que podem ativar ou envenenar a superfície de nanopartículas metálicas. Até agora, muito pouco foi estudado sobre o papel dos ligantes orgânicos utilizados na preparação de nanopartículas para aplicações em catálise ou adição na reação para ativar o catalisador. Nesta tese, foram estudadas estratégias para a síntese de nanopartículas metálicas, seu uso como componentes para a preparação de catalisadores suportados e processos de ativação e desativação envolvendo ligantes empregados como estabilizantes ou propositalmente adicionados ao meio de reação ou suporte para estimular novas reatividades e seletividade em reações de interesse industrial, como reações de hidrogenação. Aqui, o conceito de pares de Lewis frustrados (FLPs) foi expandido para o seu análogo de superfície formado pela combinação de nanopartículas (NPs) de ouro e bases de Lewis, como aminas ou fosfinas, criando um novo canal para a clivagem heterolítica de H2 e, assim, realizando reações seletivas de hidrogenação com ouro. Uma primeira abordagem para melhorar a atividade catalítica das nanopartículas de ouro foi analisar o efeito de bases contendo nitrogênio. As nanopartículas de ouro inicialmente inativas tornaram-se altamente ativas para a hidrogenação seletiva de alquino em cis-alquenos. A hidrogenação prosseguiu foi factível e totalmente seletiva usando H2 como fonte de hidrogênio e sob condições relativamente amenas (80 °C, 6 bar de H2). Nossos estudos também revelaram que a presença de estabilizantes pode bloquear a adsorção da base na superfície do ouro, impedindo a formação da interface FLPs e, portanto, levando a baixa atividade catalítica. Quando os estabilizantes foram removidos da superfície do catalisador e um ligante foi adicionado, o FLPs é formado sendo a atividade catalítica aprimorada. Além disso, demonstramos o uso bem-sucedido de ligantes organofosforados atuando como ativadores de Au NPs em uma série de importantes reações de redução, como, epóxidos, N-óxidos, sulfóxidos e alquinos. Além disso, a escolha do ligante fosforado resultou em uma diminuição na quantidade necessária para alcançar alta conversão mantendo a seletividade inalterada. A relação ligante/metal diminuiu de 100/1 (amina/Au) para 1/1 (fosfito/Au). A síntese de nanopartículas de ouro suportadas em carbono dopado com nitrogênio foi utilizada como método alternativo para a síntese de um catalisador heterogêneo de ouro ativo para hidrogenações seletivas. A principal vantagem em relação aos estudos anteriores foi evitar a adição de ligantes externos, em grande excesso, para a ativação de superfícies de ouro via FLP, tornando todo o processo ambiental e economicamente atraente


Subject(s)
Catalysis , Catalyzer , Lewis Bases/antagonists & inhibitors , Gold/agonists , Ligands , Carbon/agonists , Health Strategies , Alkenes/classification , Metal Nanoparticles , Occupational Groups
20.
Clinics ; 76: e1713, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153987

ABSTRACT

OBJECTIVES: The chemokine ligand (CCL) 21 regulates the maturation, migration, and function of dendritic cells, and has been implicated in the pathogenesis of asthma. This study aimed to investigate the association between serum CCL21 levels and asthma control. METHODS: The serum levels of CCL21 and other inflammatory cytokines were analyzed in patients with asthma (n=44) and healthy controls (n=35) by enzyme-linked immunosorbent assay. IgE levels and eosinophil counts were determined by turbidimetric inhibition immunoassay and fully automatic blood analysis, respectively. The Asthma Control Test (ACT) questionnaire was used, and spirometry and fractional exhaled nitric oxide (FENO) measurements were performed. A multiple unpaired Student's t-test was performed to analyze the differences in CCL21 and interleukin levels between patients with asthma and healthy controls. The correlation of CCL21 levels with disease severity was evaluated using the Pearson's rank correlation test. RESULTS: Serum CCL21 levels were lower in patients with asthma (254.78±95.66 pg/mL) than in healthy controls (382.95±87.77 pg/mL) (p<0.001). Patients with asthma had significantly higher levels of IL-1β (19.74±16.77 vs. 2.63±5.22 pg/mL), IL-6 (7.55±8.65 vs. 2.37±2.47 pg/mL), and tumor necrosis factor-α (12.70±12.03 vs. 4.82±3.97 pg/mL) compared with the controls. CCL21 levels were positively correlated with the ACT score (rs=0.1653, p=0.0062), forced expiratory volume in 1s (FEV1)/forced vital capacity (rs=0.3607, p<0.0001), and FEV1 (rs=0.2753, p=0.0003), and negatively correlated with FENO (rs=0.1060, p=0.0310). CCL21 levels were negatively correlated with serum IgE levels (rs=0.1114, p=0.0268) and eosinophil counts (rs=0.3476, p<0.0001). CONCLUSIONS: Serum CCL21 levels may be a new biomarker for assessing asthma control.


Subject(s)
Humans , Adult , Asthma , Chemokine CCL21/blood , Forced Expiratory Volume , Chemokines , Exhalation , Ligands , Nitric Oxide
SELECTION OF CITATIONS
SEARCH DETAIL